Generics
Functions
- 🌟🌟🌟
// Fill in the blanks to make it work struct A; // Concrete type `A`. struct S(A); // Concrete type `S`. struct SGen<T>(T); // Generic type `SGen`. fn reg_fn(_s: S) {} fn gen_spec_t(_s: SGen<A>) {} fn gen_spec_i32(_s: SGen<i32>) {} fn generic<T>(_s: SGen<T>) {} fn main() { // Using the non-generic functions reg_fn(__); // Concrete type. gen_spec_t(__); // Implicitly specified type parameter `A`. gen_spec_i32(__); // Implicitly specified type parameter `i32`. // Explicitly specified type parameter `char` to `generic()`. generic::<char>(__); // Implicitly specified type parameter `char` to `generic()`. generic(__); println!("Success!"); }
- 🌟🌟 A function call with explicitly specified type parameters looks like:
fun::<A, B, ...>()
.
// Implement the generic function below. fn sum fn main() { assert_eq!(5, sum(2i8, 3i8)); assert_eq!(50, sum(20, 30)); assert_eq!(2.46, sum(1.23, 1.23)); println!("Success!"); }
Struct and impl
- 🌟
// Implement struct Point to make it work. fn main() { let integer = Point { x: 5, y: 10 }; let float = Point { x: 1.0, y: 4.0 }; println!("Success!"); }
- 🌟🌟
// Modify this struct to make the code work struct Point<T> { x: T, y: T, } fn main() { // DON'T modify this code. let p = Point{x: 5, y : "hello".to_string()}; println!("Success!"); }
- 🌟🌟
// Add generic for Val to make the code work, DON'T modify the code in `main`. struct Val { val: f64, } impl Val { fn value(&self) -> &f64 { &self.val } } fn main() { let x = Val{ val: 3.0 }; let y = Val{ val: "hello".to_string()}; println!("{}, {}", x.value(), y.value()); }
Method
- 🌟🌟🌟
struct Point<T, U> { x: T, y: U, } impl<T, U> Point<T, U> { // Implement mixup to make it work, DON'T modify other code. fn mixup } fn main() { let p1 = Point { x: 5, y: 10 }; let p2 = Point { x: "Hello", y: '中'}; let p3 = p1.mixup(p2); assert_eq!(p3.x, 5); assert_eq!(p3.y, '中'); println!("Success!"); }
- 🌟🌟
// Fix the errors to make the code work. struct Point<T> { x: T, y: T, } impl Point<f32> { fn distance_from_origin(&self) -> f32 { (self.x.powi(2) + self.y.powi(2)).sqrt() } } fn main() { let p = Point{x: 5, y: 10}; println!("{}",p.distance_from_origin()); }
You can find the solutions here(under the solutions path), but only use it when you need it